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We extend a previous model for chirally imprinted monodomain nematic elastomers to allow a director
rotation �by an angle � /2−�� towards the pitch axes of the imprinted helices. We find that provided the rubber
matrix is allowed to spontaneously deform, the director array will make use of this additional degree of
freedom, relaxing into a conical state in both the low and high imprinting efficiency regimes. Consequently, the
transition between the regimes of differing imprinting efficiency is coupled to angle �. This interdependence is
nontrivial and involves discontinuous director rotation at the transitions.
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I. INTRODUCTION

Just as conventional rubbers, nematic elastomers are
formed by cross-linking long chain polymer molecules.
However, unlike conventional rubbers, the long chains incor-
porate rod-like liquid crystal molecules �mesogens� along
their length, and as a result these materials exhibit interesting
behavior. This has stimulated much research in recent years
�1�.

The idea of chiral imprinting was mooted by de Gennes
�2�. He suggested that liquid crystalline order might be set up
in networks by first dissolving polymers in a liquid crystal-
line phase, and then cross linking. In contrast to liquid crys-
tal elastomers, the polymers envisaged by de Gennes would
not have had liquid crystal molecules embedded.

Inspired by de Gennes’ idea, successful experimental ef-
forts have been made to imprint nematic elastomers with a
local helical structure �3,4�. These imprinted monodomain
elastomers were manufactured by adding a chiral solvent to a
nematic polymer melt to create a cholesteric phase. Cross
linking then “locks” in this helical structure by making per-
manent topologies between the chains. Achieving mon-
odomain involved techniques such as multistage crosslink-
ing, and ongoing experimental effort is very much guided by
potential applications �3,4�. Evidence of successful imprint-
ing was provided by absorption spectra obtained from the
elastomer after the solvent had been completely removed.
These showed a characteristic peak at a wavelength corre-
sponding to the chiral pitch. The removal of solvent with
twisting power leaves behind it a competition: the essentially
nematic matrix now has to pay a Frank elastic penalty for
having a twisted �helical� director distribution. But relieving
this by unwinding means that the director has to move with
respect to the elastic matrix in which it is embedded. There is
a rubber-elastic penalty for performing the untwisting. If the
untwisting penalty is too high, the system remains helical—
the imprinting is stable. If the Frank penalty is too high, it
unwinds and the imprinting efficiency is less that 100%. A
theoretical model of this chiral imprinting was proposed by
Mao and Warner �5�. In this model the free energy of an
imprinted elastomer is expressed in terms of the configura-
tion of its unit director field �7�, n��r��, after the chiral solvent

is removed, and also its configuration at formation. The free
energy is then minimized to find the current physical con-
figuration. The efficiency of the process, defined as the ratio
of helical twists retained after removal of the solvent to the
number present before, is then found in terms of known and
tunable physical parameters. These represent the extent of
cross linking, the resistance to distortion of nematic ordering,
and the pitch of the rubber in the presence of the chiral
solvent. The model predicts an abrupt transition from a fully
imprinted to a very low efficiency state when a simple com-
bination of these parameters reaches a critical value of 2 /�.

The assumption is made in Ref. �5� that the director re-
mains perpendicular to the helix axis after the solvent is re-
moved. In the present paper, we extend this model to allow
the director freedom to rotate toward this axis. In doing so
we find that if we do not allow for any local or global me-
chanical relaxation in response, then the helix remains up-
right �8�. However, by allowing a limited class of relaxations
we find that the director array will make use of this extra
degree of freedom, relaxing into the conical state in both the
imprinted and low imprinting efficiency regimes. As a result,
the abrupt transition between the regimes becomes depen-
dent on the extent of this new rotation. In the appendixes,
where the detailed analysis is presented, the approximations
we have used are discussed. These are principally that the
conical angle does not vary with position along the helix, and
simplification in the form of the spontaneous strain which
then is not totally compatible.

II. FREE ENERGY OF A RELAXED IMPRINTED
ELASTOMER

The free energy of a chirally imprinted nematic elastomer
contains two competing components. First, there is a cost
associated with distorting the natural nematic order of the
material, the Frank free energy density:

fFrank =
1

2
�K1��� · n��2 + K2�n� · ��� ∧ n���2 + K3�n� ∧ ��� ∧ n���2� ,

�1�

where K1,2,3, respectively, measure the energy penalty for
splay, twist, and bend, the three modes of nematic director
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distortion. In our problem splay will play no part.
Second, there is a cost to be paid for deforming away

from the imprinted chiral structure, given by the nematic
rubber elastic free energy which may be written �1�

felast =
�

2
Tr��0 · �T · �−1 · �� , �2�

with � being the linear shear modulus. The step length ten-
sors, �0 and �, characterize the Gaussian chain shape before

and after the solvent is removed. Tensor � describes the me-
chanical deformation of the elastomer since cross linking.

Assuming the elastomer is unconstrained after solvent re-
moval, the elastic energy must be minimized with respect to
� �see Appendix A for details�, leading to

felast =
1

2
D1�����a��� − b���cos2���z� − q0z��2/3, �3�

where � and ��z� specify, respectively, the polar and azi-
muthal angles of the director in spherical polar coordinates
�see Fig. 1�, and z defines the helical axes. ��z� varies along
the helical axes z whereas �, known as the helical cone
angle, is assumed to be constant. The definitions of D1 and
the dimensionless � ,a, and b can be found in Appendix A.
D1 measures the penalty for rotations of the director with
respect to the elastic matrix. In the small distortion limit it
corresponds to a de Gennes modulus of continuum theory.
� ,a, and b are simple functions of sin2� and of the aniso-
tropy r of the locally nematic phase into which helical direc-
tor arrangement has been imprinted.

The Frank free energy density for our system reduces to

fFrank =
��2�z�

2
�K2sin4� + K3cos2� sin2�� , �4�

as splay is not present in the geometry. The full free energy
density is fFrank+ felast. In order to write this in a succinct
way, we introduce

	 = K3/K2, �5�


��� = �sin4� + 	 sin2� cos2�� , �6�

where the constant 	 measures the relative cost of bend to
that of twist distortion, and is typically �1–5. Using these
definitions, the free energy per unit area perpendicular to the
helix axis, for a sample of length L, is

F�L� =
1

2
�

0

L

dz„K2
 ��2�z�

+ D1��a − b cos2���z� − q0z��2/3
… , �7�

where we have left out the � dependence of our newly de-
fined functions in the interests of notational simplicity.

The Euler-Lagrange equations taken directly from this in-
tegral are not analytically tractable. The situation is simpli-
fied by writing part of the second term as a Fourier cosine
series �6�

�a��� − b���cos2���z� − q0z��2/3

= �0��� + 	
n=1

�

�2n���cos�2n���z� − q0z�� . �8�

The free energy may be brought into a particularly simple
form if we take only the first two nonzero terms of the series.
In order to convince ourselves of the veracity of the predic-
tions we make using this approximation, it is essential to
have a measure of how accurate it is for given values of its
arguments. Clearly the quality of the approximation in-
creases with the ratio a��� / �b���cos2��−q0z�� �cf. binomial
expansion�, so it will be at its least accurate when ��z�
=q0z, since in this case cos2���z�−q0z�=1∀z. With this in
mind we set cos2���z�−q0z�=1 and define the following
function:

��� = ��0��� + �2���� − �a��� − b����2/3, �9�

which gives an upper bound to the error in our approxima-
tion. This function will later allow us to show that the
minima of the free energy which we numerically determine
are not simply artifacts of the approximation.

We now make the changes of variables:

� = q0z − � +
�

2
, �10�

���� = 
K2

D1
� 1

2
 − 
���
2�����2����

1/2

, �11�

u =
z

����
, �12�

�0 = q0
K2

D1
�1/2

, �13�

���� = q0���� �14�

which lead to

F�L� =
LD1���0 − �2�

2
− D1��2��

0

L/�

du���� − ��2 − sin2�� .

�15�

Notice that the integral component of this has the form of a
Lagrangian for a particle in a sine squared potential. This
property is shared by the free energy derived in Ref. �5�

FIG. 1. The director in spherical polars.
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where director rotations, �, and elastic deformation were ig-
nored. �0 was introduced �5� as the chiral power. When ro-
tations � and elastic relaxation are ignored then the value of
�0 determines the efficiency of the imprinting process: �0
�2/�⇒ imprinted, �0�2/�⇒ low efficiency, that is, loss
of helical twists. Three elements compete to give the chiral
power, see Eq. �13�. If a strongly twisting solvent was added,
the pitch of the helix at cross linking was short and the wave
vector q0 large. The Frank penalty for twist incurred when
the solvent is removed, 1

2K2q0
2, is thereby greater and leads to

unwinding ��0 larger�. Equally, if the Frank penalty K2 for
twist is large then untwisting is also more likely. Conversely,
if the penalty D1 for rotating the director with respect to the
matrix is high ��0 smaller� then untwisting is less likely to
occur.

III. PHYSICAL PREDICTIONS

We now seek to minimize the total free energy, Eq. �15�,
with respect to director orientation ��u�, following the
method introduced in Ref. �5� the relevant details of which
are given in Appendix B. The results are as follows.

For �����2/�, the imprinted helices are retained, and
the solution is referred to as “localised.” For �����2/�, the
helices begin to be lost, and the solution is referred to as
“delocalised.” The rubber is not perfectly imprinted. We refer
to ���� as the effective chiral power because it plays the
same role as the chiral power �0 does when changes in � and
elastic relaxation are ignored �5�.

Dimensionless minimized energy densities for the �de�lo-
calized regimes are, respectively,

gloc��� = �0
2
��� + �����a��� − b����2/3, �16�

gdeloc��� = ������0��� − �2����3 − 2c̃2
„����…�� , �17�

where c̃ is the solution of

2cE�c−1� = ����� . �18�

Physically, � may take on any value in the interval �0,��.
The value of � which minimizes g over this interval is the
physical value we expect to see in a relaxed sample.

The dimensionless free energy of Eqs. �16� and �17� may
be evaluated numerically in MATHEMATICA, its form depend-
ing on the choice of the three parameters �0 ,	, and r. Typi-
cally �1�, Ki�2–4�10−12N with K3�K2, and 2�r�4.
Making the choices 	=1.3 and r=2, we may find the angle
�m which minimizes g��� numerically, as a function of the
chiral power �0. Figure 2 shows the results of this calcula-
tion, along with the corresponding effective chiral power
���m�.

From the figure we see that the director array relaxes into
a conical state while in the imprinted regime for �0�0, ro-
tating further toward the helix axis as the chiral power is
increased. This is explained as follows: When �0=0 then the
dimensionless free energy is

gloc��� = �����a��� − b����2/3, �19�

which is a monotonically decreasing function of � for �
� �0,� /2�. Hence �m��0=0�=� /2. If we now increase the

chiral power then 
��� begins to play a role. For 	�2,
 is
a monotonically increasing function of � for �� �0,� /2�, so
that provided its maximum at �=� /2 has a steeper curvature
than the minimum of the anchoring term, then �m will be
shifted away from � /2. We can check this by Taylor expand-
ing gloc to second order about �=� /2:

gloc��/2 + �� � �0
2 +

3r

�r − 1�2 + �0
2�	 − 2��2

+ higher-order terms. �20�

Since this is a decreasing function of � �because 	�2� then
an increase in �0 will lead to a shifting of �m away from � /2.

As �0 passes through 0.518, �m undergoes a jump. This is
due to the presence of two local minima of equal depths in
g���. As the chiral power passes through its critical value, the
localized minimum becomes shallower than the delocalized
minimum, and the system jumps to the untwisted state. Fig-
ure 3 shows the form of the dimensionless free energy for
�0=0.52 which is just above the transition value.

Between the two local minima of g there is a pronounced
discontinuity due to the fact that we are using the Fourier
approximation in the delocalized regime. Since the disconti-
nuity is of the order of the depth of the delocalized mini-
mum, then it is clearly essential that we check that the mini-
mum is not an artifact of our approximation. When �0
=0.52 the boundary between the localized and delocalized
regimes is at �disc=0.717, and the discontinuity is �g=5.81
�10−4. The upper bound for the error in g is

FIG. 2. The physical value of the helix cone angle � rad as a
function of �0 when 	=1.3 and r=2.

FIG. 3. The two local minima in the dimensionless free energy,
responsible for the discontinuous change in �m. Here 	=1.3, r=2,
and �0=0.52.
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���disc���disc� = 5.86 � 10−4, �21�

which is consistent with �g.
We now wish to check that the size of the error is signifi-

cantly smaller than the depth of the delocalized minimum
with respect to g�0�. The minimum lies at �m=0.548, so it
has a depth g�0�−g�0.548�=3.22�10−3. At the minimum,
���m���m�=2.09�10−4, which is approximately 6% of its
depth. We conclude that our predictions about the behavior
of �m are qualitatively correct.

The jump in �m due to the two local minima produces the
discontinuity in the effective chiral power we see in Fig. 2. A
key difference from the predictions of the original paper �5�
is that the imprinted to untwisted transition no longer occurs
at �0=2/�, but rather when ���m�=2/�. It is the case that
������0∀�� �0,� /2� and r ,	�1 so the transition will al-
ways occur for a lower value of �0 than it does when �
=� /2 and distortions � are forbidden �5�.

Increasing �0 further beyond the transition shifts the de-
localized minimum toward �m=0 as shown in Fig. 2. At each
value of �0 we find that the upper bound on the error is less
than 10% of the depth, so we can again be confident that our
predictions are qualitatively correct. The behavior is ex-
plained as follows: The unwinding of the helix associated
with delocalized solutions dramatically reduces the impor-
tance of the Frank term, which is proportional to ��2�z�, so
that the elastic term becomes the dominant contribution to
the free energy. Within the elastic term

Felast�L� =
1

2
�

0

L

dzD1��a − b cos2���z� − q0z��2/3, �22�

unwinding makes the argument of the cos-squared term non-
zero. Where pure unwinding is the only effect of delocaliza-
tion, then the average value of Felast would not depend on its
extent, because the argument of the cos-squared term would
be linear in z allowing us to approximate it with an average
value cos2���z�−q0z��1/2. However, the coarsening of the
helix increases the average size of the cos2 term and the
minimum of the full free energy is determined by the size of
a relative to the average of b cos2���z�−q0z� within Eq. �22�.

The extent to which lengthening occurs gives the effi-
ciency of the imprinting process e0 defined as the fraction of
twists retained

e0 =
N0 − Nlost

N0
, �23�

where N0 is the initial total number of twists in the sample,
and Nlost is number lost. This can be derived analytically for
both localized and delocalized regimes �see Appendix C for
details�. Figure 4 shows the efficiency for the case we have
been considering. An important point to note is that the infi-
nite negative slope of e0 at the localized/delocalized transi-
tion point ��0�0.518� would be present even without the
discontinuity in the effective chiral power-in the nonconical
case there is infinite slope but with no jump. Beyond �0
�0.545, the director is globally aligned with the z axis, that
is �=0. Then imprinted structure is entirely lost, i.e.,

e0 = 0 if �m = 0. �24�

The dependence of �m on the chiral power has a qualita-
tively different form when 	�2. In this case the coefficient
of ���z� ,
���, which sets the structure of the Frank compo-
nent of the energy possesses two local minima: 
�0�=0 and

�� /2�=1. Let us consider the imprinted regime. The an-
choring term is monotonically decreasing on �0,� /2� so that
�m��0=0�=� /2. If we increase �0 from zero �so that 
���
plays a role� the minimum will remain at � /2 because 
���
possesses a local minimum there. The system will remain in
this state as we increase �0, until a deeper minimum appears
somewhere else.

In the case 	=2.5, numerical investigation reveals that for
all values of r� �1,4� this deeper minimum always appears
at �=0, so that the system makes a jump from the imprinted
transverse state to the nematic state. It is possible to calculate
the critical value of �0 at which this transition takes place by
considering the values of g at the two minima:

gloc��/2� = �0
2 +

3r

�r − 1�2 , �25�

g�0� =
3�r�1 + r��2/3

22/3�r − 1�2 . �26�

Solving g�0�=gloc�� /2� we find the critical value of the chi-
ral power:

�0c�r� =
1

r − 1
3�r�1 + r��2/3

22/3 − 3r . �27�

Provided that the effective chiral power, ���m�=� /2��, has
not reached 2/� before the chiral power reaches �0c then we
see a discontinuous jump in the cone angle ��� of � /2 at �0c.
This is shown in Fig. 5, where r=2 so �0c=0.490. Notice
that the effect of the rotation is to shift the effective chiral
power into the delocalized regime, but this is not of any
physical consequence since at �m=0 the ordering is globally
nematic.

It is natural to ask if there are any conditions under which
the effective chiral power reaches 2/� before the chiral
power reaches �0c. Noting that

FIG. 4. The efficiency of the imprinting process as a function of
�0 when 	=1.3 and r=2. Note that for lower values of �0 the
efficiency remains equal to unity.
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���/2� = �0
�1 + r�1/3

�4r�1/6 , �28�

then the condition for unwinding to occur before �0c is
reached is then

�0c�r�
�1 + r�1/3

�4r�1/6 �
2

�
. �29�

It is straightforward to show that the function of r on the
left-hand side is ��1/2�∀r�1, so the condition can never
be met for prolate elastomers.

By reducing 	 so that it is close to 2, and r so that it is
close to unity, it is possible to generate a conical low effi-
ciency state. This is illustrated in Fig. 6 which shows �m and
���m� as a functions of �0 when 	=2.01 and r=1.01. Nu-
merical investigations show that the largest value of 	 with
which such a state may be generated is 	=2.226.

IV. CONCLUSIONS

We have shown that if an imprinted elastomer is allowed
to undergo elastic deformation in response to changes in its
director configuration, then provided 	�2, it will relax into
the conical state. There is a discontinuity in the director
angle �m at a critical value of �0, corresponding to the tran-
sition between the imprinted and untwisted states. For values
of 	�2 �i.e., K3�2K2� the � dependence of the Frank and
anchoring terms in the free energy prevent the conical state
from appearing, and we find that the array switches from the
perfectly imprinted to the pure untwisted nematic state at a
critical value of �0.

When the system is on the brink of transition then the
application of even modest strains might have a profound
mechanical and director response. The possibility of this ef-
fect merits further investigation experimentally and analyti-
cally.

APPENDIX A: MINIMIZING ELASTIC ENERGY

The step length tensors �0 and � are given by

�0 = � + �r − 1�n�0n�0, �A1�

�−1 = � + 
1

r
− 1�n�n� , �A2�

where n�0 and n� are the director before and after the solvent is
removed, and r is the chain anisotropy, being the ratio of
effective step length parallel and perpendicular to the direc-
tor. Local and global mechanical deformations of the elas-
tomer are described by the elastic deformation gradient ten-
sor �. We take the axes of the imprinted helices to lie along
the z direction, and adopt a form

� = 
� −
1
�

�z�z� +
1
�

� + �mzm� z� , �A3�

where the vector m� is the unit vector aligned with the pro-
jection of the current director �after removal of solvent� onto
the �x ,y� plane. This representation is thus independent of
the x and y coordinates. � represents a volume preserving
relaxation by ���zz along z accompanied by 1/� along x
and y, plus a limited class of z-dependent shears, �mz, with
displacements in the m� direction. Such shears are known to
drastically reduce the cost of director rotation. The triangular
form �A3� only has its diagonal elements involved in the
constant volume constraint. The z-spatial dependence in
�mz�z� does not raise problems with elastic compatibility.

We choose to work in spherical polar coordinates, Fig. 1,
in which the director is given by

n� = sin � cos �x� + sin � sin �y� + cos �z� �A4�

and the director at formation is transverse

n�0 = cos�q0z�x� + sin�q0z�y� , �A5�

and describes a perfect helix with pitch wave number q0
�� /s0 where s0 is the distance along the z direction between
equivalent director configurations. Although we allow the
angle � to depend on z, we treat � as a constant throughout
the sample so that any rotations of the director toward the
helix axis must be global. This is a convenient approximation
in order to make analytical progress.

Using n�0 ·z�=0, n�0 ·n� =sin � cos��−q0z�, n� ·z�=cos �, n� ·m�
=sin �, and m� ·z�=0, we find that

FIG. 5. �m and ���m� as a functions of �0 when 	=2.5 and r
=2.

FIG. 6. �m and ���m� as a functions of �0 when 	=2.01 and r
=1.01.
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felast =
�

2

�2 +

2

�
+ �mz

2 � −
��r − 1�

2r
�
�2 −

1

�
�cos2�

+ 2 sin � cos ��mz� +
1

�
+ �mz

2 sin2�

−
r − �r − 1�sin2� cos2���z� − q0z�

�
� .

We do not impose a distortion on the system but instead
allow it to mechanically relax in response to changes in the
director field. Thus we must minimize this expression over
the parameters which describe the distortion to find the spon-
taneous relaxation. Minimizing over �mz we obtain the spon-
taneous shear:

�mz =
�r − 1�� sin � cos �

r − �r − 1�sin2�
. �A6�

Substituting this back into felast, we obtain

felast =
��2

2�r − �r − 1�sin2��
+

�r�r + 1�
2r�

−
��r − 1�sin2��1 + �r − 1�cos2���z� − q0z��

2r�
.

�A7�

We may now minimize over � to obtain the spontaneous
elongation:

�3 =
r − �r − 1�sin2�

2r
„r�r + 1� − �r − 1�sin2��1 + �r

− 1�cos2���z� − q0z��… . �A8�

Notice that this expression contains an oscillating z depen-
dent elastic component where no such dependence appeared
in our definition �A3�. The compatibility condition

�k�ij = � j�ik �A9�

then implies that since �xx��yy =1/��z� have a z depen-
dence �arising from the constant volume constraint� then we
expect the terms �xz�x� and �yz�y�, which in fact we ignore.
Such a modulation in the transverse �x ,y� plane is, however,
known to be a problem in cholesteric elastomers �in their
photonic behavior� and our observation is perhaps at the core
of this behavior. The ratio of the size of this component to
the z independent part is �r−1�2 : �r2+1�, which for a typical
value of r=2 is 1:5, so that the oscillating part should be
considerably smaller.

Returning this � to Eq. �A7� results in an elastic free
energy just as a function of � and ��z�:

felast =
1

2
D1��a − b cos2�� − q0z��2/3, �A10�

where

D1 = �
�r − 1�2

r
, �A11�

���� =
3r

�r − 1�2�2r�2/3�r − �r − 1�sin2��1/3 , �A12�

a��� = r�r + 1� − �r − 1�sin2� , �A13�

b��� = �r − 1�2sin2� . �A14�

APPENDIX B: MINIMIZATION OVER �„u…

The free energy per unit area for a sample of length L
where relaxation to a conical state was not permitted, up to a
multiplicative constant, was found to be �5�

�
0

L/�

ds�����s� − �0�2 − sin2��s�� , �B1�

�0 and � being the same as in Sec. II, and s being defined by
z=�s where ����� /2�. The approach taken to minimizing
this over � was to write down the first integral for �� involv-
ing a constant of integration c, substitute back into the inte-
gral, and then integrate over a single period to find an energy
density per period as a function of c. Dividing this by the
period then gives us an energy density which may be mini-
mized over c. Note that the period varies as chiral power
changes.

Our task is very similar: we seek to minimize the � de-
pendent part of the free energy:

I�L� = − D1�����2��������
0

L/����

du���� − �����2 − sin2�� ,

over �. However, there is an important difference here, in
that the variable � is no longer a constant. This means that
the period of the solution to the first integral depends on � as
a well as c, and we must be careful to take account of this.
The first integral is

��2 + sin2� = c2. �B2�

This equation has two types of solutions �5�. First, when c2

�1, the particle remains trapped within one of the wells of
sin2� and oscillates between �= ±arcsin c. We refer to this
as a localized solution. When c2�1, the particle has suffi-
cient energy to escape the wells and traverses the potential
landscape, and we refer to these solutions as delocalized.

Let us consider the localized case. It was shown in Ref.
�5� that the period of oscillatory motion is

Tu,loc = 4K�c� , �B3�

where K�c� is the complete elliptic integral of the first kind
�9�. The subscripts on T refer to the fact that it is the period
in terms of the variable u for the localized solutions. We may
now perform the integral over this period, finding �5� that

�
0

4K�c�

du���� − �����2 − sin2��

= 4K�c��c2 + ����2 − 2 +
2E�c�
K�c� � , �B4�

where E�c� is the complete elliptic integral of the second
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kind �10�. Thus after minimizing over �, averaging over one
period we find

I�Tz,loc�
Tz,loc

=
I�4K�c������

4K�c�����
= − D1�����2���

� �c2 + ����2 − 2 +
2E�c�
K�c� � . �B5�

Since c2+2E�c� /K�c� is a monotonically decreasing function
of c on c� �0,1� then the minimum in terms of c in the
localized case is always at c=1. Thus after minimizing over
c

I�Tz,loc�
Tz,loc

= − D1�����2��������2 − 1� . �B6�

Now let us consider the delocalized solutions. The particle
traverses the potential, so, to find the energy density we must
calculate the “time” the particle takes to go from one peak to
the next. This is

Tu,deloc = 2c−1K�c−1� . �B7�

Performing the integral over this period,

�
0

2c−1K�c−1�
du���� − �����2 − sin2��

= 2������2 − c2�
2

c
K�c−1� − ����� + 2cE�c−1�� ,

we find that the integral component of the free energy den-
sity, minimized over � and averaged over one period, is

I�Tz,deloc�
Tz,deloc

= − D1�����2���

� �����2 − c2 +
c2

K�c−1�

2E�c−1� −

�����
c

�� .

�B8�

Using the identities

dK�p�
dp

=
E�p�

p�1 − p2�
−

K�p�
p

, �B9�

dE�p�
dp

=
E�p� − K�p�

p
�B10�

we may minimize Eq. �B8� in the c�1 range by setting its
derivative with respect to c to zero. This yields the condition

2cE�c−1� = ����� , �B11�

which has no solution for ����� �2/��. When ����
� �2/�� then the minimized energy density is obtained by
solving the above condition �B11� numerically to find c as a
function of ����, and substituting this back into the density.
We denote the solution to Eq. �B11� c̃(����). Since

sgn� d

dc

I�Tz,deloc�
Tz,deloc

�
c=1

= �+ if ���� � 2/�

− if ���� � 2/� ,
� �B12�

and

lim
c→1−

I�Tz,loc�
Tz,loc

= lim
c→1+

I�Tz,deloc�
Tz,deloc

, �B13�

then the global minimum over c of the integral part of the
free energy is at

c = �1 if ���� � 2/�

c̃������ if ���� � 2/� .
� �B14�

If �����2/�, then the solution to the Euler Lagrange
equation for ��u� has a divergent period and we may treat it
as a constant, fixed by boundary conditions in the sample.
The important consequence of this is that if we recall the
relation between � the director angle �: �=q0z−�+� /2, we
see that � maintains the imprinted period. Hence localized
solutions correspond to the imprinted state.

If �����2/� then the solutions to the Euler-Lagrange
equations describe a particle moving over a potential land-
scape. It is useful to make the schematic decomposition: �
=az+periodic�z�. From this we see that the physical director
angle will be given by

��z� = �q0 − a�z − periodic�z� + �/2, �B15�

so that the pitch wave number is reduced and some of the
twists in the imprinted helices are lost. Hence delocalized
solutions correspond to the partially untwisted state. The pe-
riodic component of the solution corresponds to a coarsening
of the imprinted helix, i.e., the tightness of the helical twists
varies along z.

Combining the � dependent part of the free energy den-
sity, I�L�, minimized over �, with the � independent part,
and dividing by D1 /2, we obtain a dimensionless energy den-
sity which in the delocalized ������2/�� regime is

gdeloc��� = ������0��� − �2����3 − 2c̃2
„����…�� . �B16�

In the localized regime there is no need to use the Fourier
series approximation because since no unwinding has oc-
curred then ��z�=q0z. This means that we may set
cos2���z�−q0z�=1 and ��=q0 in Eq. �7� and the integral
becomes trivial. The dimensionless free energy in the local-
ized ������2/�� regime is then

gloc��� = �0
2
��� + �����a��� − b����2/3. �B17�

APPENDIX C: IMPRINTING EFFICIENCY

The efficiency, as introduced in the main text, is clearly
unity in the localized regime, since no twists are lost. In the
delocalized regime, since the modulation in � is periodic,
then the efficiency may be calculated by considering a single
period of the modulation. The journey of our “particle” from
one peak of the potential to the next corresponds to the loss
of half a twist, since the peaks are separated by �. The
“time” taken for the particle to make this journey corre-
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sponds to the length �along the z direction� over which the
director loses this half twist. This is just the period Tz,deloc:

Tz,deloc =
���m�Tu,deloc

q0
=

2���m�K�c̃−1�

c̃q0

. �C1�

The initial number of twists present along this length is

NTz,deloc
=

2���m�K�c̃−1�/q0

2�c̃/q0

=
���m�K�c̃−1�

c̃�
, �C2�

so the efficiency in the delocalized regime is

e0 =
NTz,deloc

− 1
2

NTz,deloc

�C3�

=
2���m�K�c̃−1� − c̃�

2���m�K�c̃−1�
. �C4�
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